MLG 033 Transformers

Machine Learning Guide - Een podcast door Dept

Categorieën:

Try a walking desk while studying ML or working on your projects! https://ocdevel.com/walk Show notes: https://ocdevel.com/mlg/33 3Blue1Brown videos: https://3blue1brown.com/ Background & Motivation: RNN Limitations: Sequential processing prevents full parallelization—even with attention tweaks—making them inefficient on modern hardware. Breakthrough: “Attention Is All You Need” replaced recurrence with self-attention, unlocking massive parallelism and scalability. Core Architecture: Layer Stack: Consists of alternating self-attention and feed-forward (MLP) layers, each wrapped in residual connections and layer normalization. Positional Encodings: Since self-attention is permutation invariant, add sinusoidal or learned positional embeddings to inject sequence order. Self-Attention Mechanism: Q, K, V Explained: Query (Q): The representation of the token seeking contextual info. Key (K): The representation of tokens being compared against. Value (V): The information to be aggregated based on the attention scores. Multi-Head Attention: Splits Q, K, V into multiple “heads” to capture diverse relationships and nuances across different subspaces. Dot-Product & Scaling: Computes similarity between Q and K (scaled to avoid large gradients), then applies softmax to weigh V accordingly. Masking: Causal Masking: In autoregressive models, prevents a token from “seeing” future tokens, ensuring proper generation. Padding Masks: Ignore padded (non-informative) parts of sequences to maintain meaningful attention distributions. Feed-Forward Networks (MLPs): Transformation & Storage: Post-attention MLPs apply non-linear transformations; many argue they’re where the “facts” or learned knowledge really get stored. Depth & Expressivity: Their layered nature deepens the model’s capacity to represent complex patterns. Residual Connections & Normalization: Residual Links: Crucial for gradient flow in deep architectures, preventing vanishing/exploding gradients. Layer Normalization: Stabilizes training by normalizing across features, enhancing convergence. Scalability & Efficiency Considerations: Parallelization Advantage: Entire architecture is designed to exploit modern parallel hardware, a huge win over RNNs. Complexity Trade-offs: Self-attention’s quadratic complexity with sequence length remains a challenge; spurred innovations like sparse or linearized attention. Training Paradigms & Emergent Properties: Pretraining & Fine-Tuning: Massive self-supervised pretraining on diverse data, followed by task-specific fine-tuning, is the norm. Emergent Behavior: With scale comes abilities like in-context learning and few-shot adaptation, aspects that are still being unpacked. Interpretability & Knowledge Distribution: Distributed Representation: “Facts” aren’t stored in a single layer but are embedded throughout both attention heads and MLP layers. Debate on Attention: While some see attention weights as interpretable, a growing view is that real “knowledge” is diffused across the network’s parameters.

Visit the podcast's native language site