Crime Prevention
Modellansatz - Een podcast door Gudrun Thäter, Sebastian Ritterbusch
Categorieën:
This is the last of four conversation Gudrun had during the British Applied Mathematics Colloquium which took place 5th – 8th April 2016 in Oxford. Andrea Bertozzi from the University of California in Los Angeles (UCLA) held a public lecture on The Mathematics of Crime. She has been Professor of Mathematics at UCLA since 2003 and Betsy Wood Knapp Chair for Innovation and Creativity (since 2012). From 1995-2004 she worked mostly at Duke University first as Associate Professor of Mathematics and then as Professor of Mathematics and Physics. As an undergraduate at Princeton University she studied physics and astronomy alongside her major in mathematics and went through a Princeton PhD-program. For her thesis she worked in applied analysis and studied fluid flow. As postdoc she worked with Peter Constantin at the University of Chicago (1991-1995) on global regularity for vortex patches. But even more importantly, this was the moment when she found research problems that needed knowledge about PDEs and flow but in addition both numerical analysis and scientific computing. She found out that she really likes to collaborate with very different specialists. Today hardwork can largely be carried out on a desktop but occasionally clusters or supercomputers are necessary. The initial request to work on Mathematics in crime came from a colleague, the social scientist Jeffrey Brantingham. He works in Anthropology at UCLA and had well established contacts with the police in LA. He was looking for mathematical input on some of his problems and raised that issue with Andrea Bertozzi. Her postdoc George Mohler came up with the idea to adapt an earthquake model after a discussion with Frederic Paik Schoenberg, a world expert in that field working at UCLA. The idea is to model crimes of opportunity as being triggered by crimes that already happend. So the likelihood of new crimes can be predicted as an excitation in space and time like the shock of an earthquake. Of course, here statistical models are necessary which say how the excitement is distributed and decays in space and time. Mathematically this is a self-exciting point process. The traditional Poisson process model has a single parameter and thus, no memory - i.e. no connections to other events can be modelled. The Hawkes process builds on the Poisson process as background noise but adds new events which then are triggering events according to an excitation rate and the exponential decay of excitation over time. This is a memory effect based on actual events (not only on a likelihood) and a three parameter model. It is not too difficult to process field data, fit data to that model and make an extrapolation in time. Meanwhile the results of that idea work really well in the field. (...)