Energy Markets

Modellansatz - Een podcast door Gudrun Thäter, Sebastian Ritterbusch

Categorieën:

Gudrun Talks to Sema Coşkun who at the moment of the conversation in 2018 is a Post Doc researcher at the University Kaiserslautern in the group of financial mathematics. She constructs models for the behaviour of energy markets. In short the conversation covers the questions: How are classical markets modelled? In which way are energy markets different and need new ideas? The seminal work of Black and Scholes (1973) established the modern financial theory. In a Black-Scholes setting, it is assumed that the stock price follows a Geometric Brownian Motion with a constant drift and constant volatility. The stochastic differential equation for the stock price process has an explicit solution. Therefore, it is possible to obtain the price of a European call option in a closed-form formula. Nevertheless, there exist drawbacks of the Black-Scholes assumptions. The most criticized aspect is the constant volatility assumption. It is considered an oversimplification. Several improved models have been introduced to overcome those drawbacks. One significant example of such new models is the Heston stochastic volatility model (Heston, 1993). In this model, volatility is indirectly modeled by a separate mean reverting stochastic process, namely. the Cox-Ingersoll-Ross (CIR) process. The CIR process captures the dynamics of the volatility process well. However, it is not easy to obtain option prices in the Heston model since the model has more complicated dynamics compared to the Black-Scholes model. In financial mathematics, one can use several methods to deal with these problems. In general, various stochastic processes are used to model the behavior of financial phenomena. One can then employ purely stochastic approaches by using the tools from stochastic calculus or probabilistic approaches by using the tools from probability theory. On the other hand, it is also possible to use Partial Differential Equations (the PDE approach). The correspondence between the stochastic problem and its related PDE representation is established by the help of Feynman-Kac theorem. Also in their original paper, Black and Scholes transferred the stochastic representation of the problem into its corresponding PDE, the heat equation. After solving the heat equation, they transformed the solution back into the relevant option price. As a third type of methods, one can employ numerical methods such as Monte Carlo methods. Monte Carlo methods are especially useful to compute the expected value of a random variable. Roughly speaking, instead of examining the probabilistic evolution of this random variable, we focus on the possible outcomes of it. One generates random numbers with the same distribution as the random variable and then we simulate possible outcomes by using those random numbers. Then we replace the expected value of the random variable by taking the arithmetic average of the possible outcomes obtained by the Monte Carlo simulation. (...)

Visit the podcast's native language site