Stokes Operator
Modellansatz - Een podcast door Gudrun Thäter, Sebastian Ritterbusch
Categorieën:
Peer Kunstmann hat in Kiel Mathematik studiert und 1995 promoviert. In seiner Zeit an der Fakultät für Mathematik in Karlsruhe hat er sich 2002 habilitiert. Er arbeitet als Akademischer Oberrat dauerhaft in der Arbeitsgruppe Angewandte Analysis an unserer Fakultät. Gudrun hat das Gespräch über ein für beide interessantes Thema - das Stokesproblem - gesucht, weil beide schon über längere Zeit mit unterschiedlichen Methoden zu dieser Gleichung forschen. Das Stokesproblem ist der lineare Anteil der Navier-Stokes Gleichungen, dem klassischen Modell für Strömungen. Sie haben eine gewisse Faszination, da sie einfach genug erscheinen, um sie in ihrer Struktur sehr eingehend verstehen zu können, zeigen aber auch immer wieder, dass man sie nicht unterschätzen darf in ihrer Komplexität. Peers Interesse wurde zu Beginn seiner Zeit in Karlsruhe durch Matthias Hieber geweckt, der inzwischen an der TU Darmstadt tätig ist. Es zeigte sich seit damals als sehr aktives Forschungsgebiet, weshalb er auch immer wieder neu zu diesen Fragestellungen zurückgekehrt ist. Mit den klassischen Randbedingungen (konkret, wenn auf dem Rand vorgeschrieben wird, dass die Lösung dort verschwindet = homogene Dirichletbedingung) ist das Stokesproblem auffassbar als Laplaceoperator, der auf Räumen mit divergenzfreien Vektorfeldern agiert. Der Laplaceoperator ist sehr gut verstanden und die Einschränkung auf den abgeschlossenen Unterraum der Vektorfelder mit der Eigenschaft, dass ihre Divergenz den Wert 0 ergibt, lässt sich mit einer Orthogonalprojektion - der Helmholtzprojektion - beschreiben. Im Hilbertraumfall, d.h. wenn die Räume auf einer L^2-Struktur basieren und der Raum deshalb auch ein Skalarprodukt hat, weiß man, dass diese Projektion immer existiert und gute Eigenschaften hat. Für andere Räume ohne diese Struktur (z.B. L^q-basiert für q nicht 2) hängt die Antwort auf die Frage, für welche q die Projektion existiert, von der Geometrie des Gebietes ab. Für beschränkte Gebiete geht vor allem die Glattheit des Randes ein. Das spiegelt sich auch auf der Seite des Laplaceproblems, wo die Regularität im Innern des Gebietes relativ elementar gezeigt werden kann, aber in der Nähe des Randes und auf dem Rand gehen in die Argumente direkt die Regularität des Randes ein. Mathematisch wird das Gebiet dabei mit Kreisen überdeckt und mit Hilfe einer sogenannten Zerlegung der Eins anschließend die Lösung für das ganze Gebiet zusammengesetzt. Für die Kreise, die ganz im Innern des Gebietes liegen, wird die Lösung auf den ganzen Raum mit dem Wert 0 fortgesetzt, weil die Behandlung des ganzen Raumes sehr einfach ist. Für Kreise am Rand, wird der Rand lokal glatt gebogen zu einer geraden Linie und (ebenfalls nach Fortsetzung mit 0) ein Halbraum-Problem gelöst. Natürlich liegt es in der Glattheit des Randes, ob das "gerade biegen" nur kleine Fehlerterme erzeugt, die sich "verstecken" lassen oder (...)