Viscoelastic Fluids
Modellansatz - Een podcast door Gudrun Thäter, Sebastian Ritterbusch
Categorieën:
This is the second of four conversations Gudrun had during the British Applied Mathematics Colloquium which took place 5th – 8th of April 2016 in Oxford. Helen Wilson always wanted to do maths and had imagined herself becoming a mathematician from a very young age. But after graduation she did not have any road map ready in her mind. So she applied for jobs which - due to a recession - did not exist. Today she considers herself lucky for that since she took a Master's course instead (at Cambridge University), which hooked her to mathematical research in the field of viscoelastic fluids. She stayed for a PhD and after that for postdoctoral work in the States and then did lecturing at Leeds University. Today she is a Reader in the Department of Mathematics at University College London. So what are viscoelastic fluids? If we consider everyday fluids like water or honey, it is a safe assumption that their viscosity does not change much - it is a material constant. Those fluids are called Newtonian fluids. All other fluids, i.e. fluids with non-constant viscosity or even more complex behaviours, are called non-Newtonian and viscoelastic fluids are a large group among them. Already the name suggests, that viscoelastic fluids combine viscous and elastic behaviour. Elastic effects in fluids often stem from clusters of particles or long polymers in the fluid, which align with the flow. It takes them a while to come back when the flow pattern changes. We can consider that as keeping a memory of what happened before. This behaviour can be observed, e.g., when stirring tinned tomato soup and then waiting for it to go to rest again. Shortly before it finally enters the rest state one sees it springing back a bit before coming to a halt. This is a motion necessary to complete the relaxation of the soup. Another surprising behaviour is the so-called Weissenberg effect, where in a rotation of elastic fluid the stretched out polymer chains drag the fluid into the center of the rotation. This leads to a peak in the center, instead of a funnel which we expect from experiences stirring tea or coffee. The big challenge with all non-Newtonian fluids is that we do not have equations which we know are the right model. It is mostly guess work and we definitely have to be content with approximations. And so it is a compromise of fitting what we can model and measure to the easiest predictions possible. Of course, slow flow often can be considered to be Newtonian whatever the material is. The simplest models then take the so-called retarded fluid assumption, i.e. the elastic properties are considered to be only weak. Then, one can expand around the Newtonian model as a base state. The first non-linear model which is constructed in that way is that of second-order fluids. They have two more parameters than the Newtonian model, which are called normal stress coefficients. (...)