Created equal: Euclid’s Postulates 1-4

Opinionated History of Mathematics - Een podcast door Intellectual Mathematics

The etymology of the term “postulate” suggests that Euclid’s axioms were once questioned. Indeed, the drawing of lines and circles can be regarded as depending on motion, which is supposedly proved impossible by Zeno’s paradoxes. Although whether these postulates correspond to ruler and compass or not is debatable, especially since Euclid seems to restrict himself to a “collapsible” compass in Proposition 2. Furthermore, why did Euclid feel the need to postulate that “all right angles are equal”? Perhaps in order to rule out non-flat surfaces such as cones.

Visit the podcast's native language site