Data Engineering Podcast
Een podcast door Tobias Macey - Zondagen
Categorieën:
419 Afleveringen
-
Unpacking Fauna: A Global Scale Cloud Native Database - Episode 78
Gepubliceerd: 22-4-2019 -
Index Your Big Data With Pilosa For Faster Analytics - Episode 77
Gepubliceerd: 15-4-2019 -
Serverless Data Pipelines On DataCoral - Episode 76
Gepubliceerd: 8-4-2019 -
Why Analytics Projects Fail And What To Do About It - Episode 75
Gepubliceerd: 1-4-2019 -
Building An Enterprise Data Fabric At CluedIn - Episode 74
Gepubliceerd: 25-3-2019 -
A DataOps vs DevOps Cookoff In The Data Kitchen - Episode 73
Gepubliceerd: 18-3-2019 -
Customer Analytics At Scale With Segment - Episode 72
Gepubliceerd: 4-3-2019 -
Deep Learning For Data Engineers - Episode 71
Gepubliceerd: 25-2-2019 -
The Alluxio Distributed Storage System - Episode 70
Gepubliceerd: 19-2-2019 -
Building Machine Learning Projects In The Enterprise - Episode 69
Gepubliceerd: 11-2-2019 -
Cleaning And Curating Open Data For Archaeology - Episode 68
Gepubliceerd: 4-2-2019 -
Managing Database Access Control For Teams With strongDM - Episode 67
Gepubliceerd: 29-1-2019 -
Building Enterprise Big Data Systems At LEGO - Episode 66
Gepubliceerd: 21-1-2019 -
TimescaleDB: The Timeseries Database Built For SQL And Scale - Episode 65
Gepubliceerd: 14-1-2019 -
Performing Fast Data Analytics Using Apache Kudu - Episode 64
Gepubliceerd: 7-1-2019 -
Simplifying Continuous Data Processing Using Stream Native Storage In Pravega with Tom Kaitchuck - Episode 63
Gepubliceerd: 31-12-2018 -
Continuously Query Your Time-Series Data Using PipelineDB with Derek Nelson and Usman Masood - Episode 62
Gepubliceerd: 24-12-2018 -
Advice On Scaling Your Data Pipeline Alongside Your Business with Christian Heinzmann - Episode 61
Gepubliceerd: 17-12-2018 -
Putting Apache Spark Into Action with Jean Georges Perrin - Episode 60
Gepubliceerd: 10-12-2018 -
Apache Zookeeper As A Building Block For Distributed Systems with Patrick Hunt - Episode 59
Gepubliceerd: 3-12-2018
This show goes behind the scenes for the tools, techniques, and difficulties associated with the discipline of data engineering. Databases, workflows, automation, and data manipulation are just some of the topics that you will find here.