The Data Exchange with Ben Lorica

Een podcast door Ben Lorica - Donderdagen

Donderdagen

Categorieën:

281 Afleveringen

  1. Unleashing the power of large language models

    Gepubliceerd: 18-8-2022
  2. Building production-ready machine learning pipelines

    Gepubliceerd: 11-8-2022
  3. Machine Learning at Gong

    Gepubliceerd: 4-8-2022
  4. Data Infrastructure for Computer Vision

    Gepubliceerd: 28-7-2022
  5. How DALL·E works

    Gepubliceerd: 21-7-2022
  6. Scalable, end-to-end machine learning, for everyone

    Gepubliceerd: 14-7-2022
  7. Orchestration and Pipelines for Data Scientists

    Gepubliceerd: 7-7-2022
  8. Dataframes at scale

    Gepubliceerd: 30-6-2022
  9. Software-Defined Assets

    Gepubliceerd: 23-6-2022
  10. Adversarial Machine Learning

    Gepubliceerd: 16-6-2022
  11. Orchestrating Machine Learning Applications

    Gepubliceerd: 9-6-2022
  12. Narrative AI

    Gepubliceerd: 2-6-2022
  13. Machine Learning Model Observability

    Gepubliceerd: 26-5-2022
  14. Dataflow Automation

    Gepubliceerd: 19-5-2022
  15. Practical Machine Learning and Deep learning

    Gepubliceerd: 12-5-2022
  16. Machine Learning for Optimization

    Gepubliceerd: 5-5-2022
  17. Efficient Scaling of Language Models

    Gepubliceerd: 28-4-2022
  18. Data Science at Stitch Fix

    Gepubliceerd: 21-4-2022
  19. The 2022 AI Index

    Gepubliceerd: 14-4-2022
  20. Why You Need A Time-Series Database

    Gepubliceerd: 7-4-2022

8 / 15

A series of informal conversations with thought leaders, researchers, practitioners, and writers on a wide range of topics in technology, science, and of course big data, data science, artificial intelligence, and related applications. Anchored by Ben Lorica (@BigData), the Data Exchange also features a roundup of the most important stories from the worlds of data, machine learning and AI. Detailed show notes for each episode can be found on https://thedataexchange.media/ The Data Exchange podcast is a production of Gradient Flow [https://gradientflow.com/].

Visit the podcast's native language site