The Data Stack Show
Een podcast door Rudderstack
440 Afleveringen
-
58: Data Federation is No Longer The "F" Word with Scott Gnau of InterSystems
Gepubliceerd: 20-10-2021 -
Data Debrief: Can Tools Help Solve Data Quality Organizational Challenges?
Gepubliceerd: 15-10-2021 -
57: Improving Data Quality Using Data Product SLAs with Egor Gryaznov of Bigeye
Gepubliceerd: 13-10-2021 -
56: Stream Processing and Observability with Jeff Chao of Stripe
Gepubliceerd: 6-10-2021 -
55: Tables vs. Streams and Defining Real-Time with Pete Goddard of Deephaven Data Labs
Gepubliceerd: 29-9-2021 -
54: The Center of the Modern Data Stack with Neil Rahilly of Mixpanel
Gepubliceerd: 22-9-2021 -
53: What Religion, a Cult, and a Tech Product Have in Common, with Bart Farrell of DoKC
Gepubliceerd: 15-9-2021 -
52: Discussing Data Warehouses, Lakes, and Meshes with James Serra of EY
Gepubliceerd: 8-9-2021 -
51: Democratizing AI and ML with Tristan Zajonc of Continual
Gepubliceerd: 1-9-2021 -
50: From Data Infrastructure to Data Management with Ananth Packkildurai
Gepubliceerd: 25-8-2021 -
49: MLops - The Finalization of the Data Stack with Ben Rogojan of Facebook
Gepubliceerd: 18-8-2021 -
48: Season Two Recap with Eric Dodds and Kostas Pardalis
Gepubliceerd: 11-8-2021 -
47: Taming the Four Dragons of Data with Sven Balnojan of Mercateo Gruppe
Gepubliceerd: 4-8-2021 -
46: A New Paradigm in Stream Processing with Arjun Narayan of Materialize
Gepubliceerd: 28-7-2021 -
45: Open Source and Attribution with Ophir Prusak of Codesmith
Gepubliceerd: 21-7-2021 -
44: Leveraging Data in a Post-Covid World with Ruben Ugarte of Practico Analytics
Gepubliceerd: 14-7-2021 -
43: Modern Authentication and User Management with Sokratis Vidros of Clerk.dev
Gepubliceerd: 7-7-2021 -
42: Scaling Data Science with Ryan Boyer of Shipt
Gepubliceerd: 30-6-2021 -
41: Doing MLOps on Top of Apache Pulsar and Trino with Joshua Odmark of Pandio
Gepubliceerd: 23-6-2021 -
40: Graph Processing on Snowflake for Customer Behavioral Analytics
Gepubliceerd: 16-6-2021
Each week we’ll talk to data engineers, analysts, and data scientists about their experience around building and maintaining data infrastructure, delivering data and data products, and driving better outcomes across their businesses with data.
