Best AI papers explained
Een podcast door Enoch H. Kang
441 Afleveringen
-
Agentic Misalignment: LLMs as Insider Threats
Gepubliceerd: 28-7-2025 -
Small Language Models: Future of Agentic AI
Gepubliceerd: 28-7-2025 -
Learning without training: The implicit dynamics of in-context learning
Gepubliceerd: 28-7-2025 -
Inverse Scaling in Test-Time Compute
Gepubliceerd: 28-7-2025 -
LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra
Gepubliceerd: 28-7-2025 -
Microsoft's Blueprint: AI, Quantum, and the Agentic Future
Gepubliceerd: 26-7-2025 -
Zuckerberg's AI Vision Analyzed
Gepubliceerd: 26-7-2025 -
Inside Claude: Scaling, Agency, and Interpretability
Gepubliceerd: 26-7-2025 -
Personalized language modeling from personalized human feedback
Gepubliceerd: 26-7-2025 -
Position: Empowering Time Series Reasoning with Multimodal LLMs
Gepubliceerd: 25-7-2025 -
An empirical risk minimization approach for offline inverse RL and Dynamic Discrete Choice models
Gepubliceerd: 22-7-2025 -
Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities
Gepubliceerd: 22-7-2025 -
The Invisible Leash: Why RLVR May Not Escape Its Origin
Gepubliceerd: 20-7-2025 -
Language Model Personalization via Reward Factorization
Gepubliceerd: 20-7-2025 -
Train for the Worst, Plan for the Best: Understanding Token Ordering in Masked Diffusions
Gepubliceerd: 18-7-2025 -
Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
Gepubliceerd: 17-7-2025 -
Soft Best-of-n Sampling for Model Alignment
Gepubliceerd: 16-7-2025 -
On Temporal Credit Assignment and Data-Efficient Reinforcement Learning
Gepubliceerd: 15-7-2025 -
Bradley–Terry and Multi-Objective Reward Modeling Are Complementary
Gepubliceerd: 15-7-2025 -
Probing Foundation Models for World Models
Gepubliceerd: 15-7-2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.