Best AI papers explained
Een podcast door Enoch H. Kang
522 Afleveringen
-  
Value Flows: Flow-Based Distributional Reinforcement Learning
Gepubliceerd: 14-10-2025 -  
Self-Adapting Language Models
Gepubliceerd: 12-10-2025 -  
The Markovian Thinker
Gepubliceerd: 12-10-2025 -  
Moloch’s Bargain: emergent misalignment when LLMs compete for audiences
Gepubliceerd: 12-10-2025 -  
Transformer Predictor Dynamics and Task Diversity
Gepubliceerd: 11-10-2025 -  
Base models know how to reason, thinking models learn when
Gepubliceerd: 11-10-2025 -  
Spectrum tuning: Post-training for distributional coverage and in-context steerability
Gepubliceerd: 11-10-2025 -  
Understanding Prompt Tuning and In-Context Learning via Meta-Learning
Gepubliceerd: 11-10-2025 -  
MLPs Learn In-Context on Regression and Classification tasks
Gepubliceerd: 11-10-2025 -  
Is Pre-Training Truly Better than Meta-Learning?
Gepubliceerd: 11-10-2025 -  
Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Gepubliceerd: 11-10-2025 -  
Do LLMs Recognize Your Preferences? Evaluating Personalized Preference Following in LLMs
Gepubliceerd: 9-10-2025 -  
Learning dynamics of LLM finetuning
Gepubliceerd: 9-10-2025 -  
Iterative Data Smoothing: Mitigating Reward Overfitting and Overoptimization in RLHF
Gepubliceerd: 9-10-2025 -  
OpenAI Agent Builder and n8n: Orchestrating Reasoning Versus Automating Process
Gepubliceerd: 8-10-2025 -  
Training Agents Inside of Scalable World Models
Gepubliceerd: 8-10-2025 -  
Small Language Models are the Future of Agentic AI
Gepubliceerd: 7-10-2025 -  
Activation Steering in Generative Settings via Contrastive Causal Mediation Analysis
Gepubliceerd: 6-10-2025 -  
Eliciting Secret Knowledge from Language Models
Gepubliceerd: 6-10-2025 -  
Temporal difference flow
Gepubliceerd: 6-10-2025 
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
 