Best AI papers explained
Een podcast door Enoch H. Kang
550 Afleveringen
-
Front-Loading Reasoning: The Synergy between Pretraining and Post-Training Data
Gepubliceerd: 18-10-2025 -
Representation-Based Exploration for Language Models: From Test-Time to Post-Training
Gepubliceerd: 18-10-2025 -
The attacker moves second: stronger adaptive attacks bypass defenses against LLM jail- Breaks and prompt injections
Gepubliceerd: 18-10-2025 -
When can in-context learning generalize out of task distribution?
Gepubliceerd: 16-10-2025 -
The Art of Scaling Reinforcement Learning Compute for LLMs
Gepubliceerd: 16-10-2025 -
A small number of samples can poison LLMs of any size
Gepubliceerd: 16-10-2025 -
Dual Goal Representations
Gepubliceerd: 14-10-2025 -
Welcome to the Era of Experience
Gepubliceerd: 14-10-2025 -
Value Flows: Flow-Based Distributional Reinforcement Learning
Gepubliceerd: 14-10-2025 -
Self-Adapting Language Models
Gepubliceerd: 12-10-2025 -
The Markovian Thinker
Gepubliceerd: 12-10-2025 -
Moloch’s Bargain: emergent misalignment when LLMs compete for audiences
Gepubliceerd: 12-10-2025 -
Transformer Predictor Dynamics and Task Diversity
Gepubliceerd: 11-10-2025 -
Base models know how to reason, thinking models learn when
Gepubliceerd: 11-10-2025 -
Spectrum tuning: Post-training for distributional coverage and in-context steerability
Gepubliceerd: 11-10-2025 -
Understanding Prompt Tuning and In-Context Learning via Meta-Learning
Gepubliceerd: 11-10-2025 -
MLPs Learn In-Context on Regression and Classification tasks
Gepubliceerd: 11-10-2025 -
Is Pre-Training Truly Better than Meta-Learning?
Gepubliceerd: 11-10-2025 -
Agentic Context Engineering: Evolving Contexts for Self-Improving Language Models
Gepubliceerd: 11-10-2025 -
Do LLMs Recognize Your Preferences? Evaluating Personalized Preference Following in LLMs
Gepubliceerd: 9-10-2025
Cut through the noise. We curate and break down the most important AI papers so you don’t have to.
