Linear Digressions

Een podcast door Ben Jaffe and Katie Malone

Categorieën:

289 Afleveringen

  1. Network effects re-release: when the power of a public health measure lies in widespread adoption

    Gepubliceerd: 15-3-2020
  2. Causal inference when you can't experiment: difference-in-differences and synthetic controls

    Gepubliceerd: 9-3-2020
  3. Better know a distribution: the Poisson distribution

    Gepubliceerd: 2-3-2020
  4. The Lottery Ticket Hypothesis

    Gepubliceerd: 23-2-2020
  5. Interesting technical issues prompted by GDPR and data privacy concerns

    Gepubliceerd: 17-2-2020
  6. Thinking of data science initiatives as innovation initiatives

    Gepubliceerd: 10-2-2020
  7. Building a curriculum for educating data scientists: Interview with Prof. Xiao-Li Meng

    Gepubliceerd: 2-2-2020
  8. Running experiments when there are network effects

    Gepubliceerd: 27-1-2020
  9. Zeroing in on what makes adversarial examples possible

    Gepubliceerd: 20-1-2020
  10. Unsupervised Dimensionality Reduction: UMAP vs t-SNE

    Gepubliceerd: 13-1-2020
  11. Data scientists: beware of simple metrics

    Gepubliceerd: 5-1-2020
  12. Communicating data science, from academia to industry

    Gepubliceerd: 30-12-2019
  13. Optimizing for the short-term vs. the long-term

    Gepubliceerd: 23-12-2019
  14. Interview with Prof. Andrew Lo, on using data science to inform complex business decisions

    Gepubliceerd: 16-12-2019
  15. Using machine learning to predict drug approvals

    Gepubliceerd: 8-12-2019
  16. Facial recognition, society, and the law

    Gepubliceerd: 2-12-2019
  17. Lessons learned from doing data science, at scale, in industry

    Gepubliceerd: 25-11-2019
  18. Varsity A/B Testing

    Gepubliceerd: 18-11-2019
  19. The Care and Feeding of Data Scientists: Growing Careers

    Gepubliceerd: 11-11-2019
  20. The Care and Feeding of Data Scientists: Recruiting and Hiring Data Scientists

    Gepubliceerd: 4-11-2019

2 / 15

In each episode, your hosts explore machine learning and data science through interesting (and often very unusual) applications.

Visit the podcast's native language site